diff --git a/supervised_learning/create_classifiers.py b/supervised_learning/create_classifiers.py index c4937ad0f6a662e89587fdb13bf8d4324c7aae57..84de49c36f6ebc582bde868c40d36fdc8eeb0760 100644 --- a/supervised_learning/create_classifiers.py +++ b/supervised_learning/create_classifiers.py @@ -79,7 +79,20 @@ datasets = { "fvert": { "X" : [], "Y": [] - }, + }, + + }, + "feux_train": { + "feux": { + "X":[], + "Y":[] + }, + }, + "feux_val": { + "feux": { + "X":[], + "Y":[] + }, } } @@ -91,6 +104,9 @@ for classe in CLASSES: if classe not in ['ff', 'empty']: datasets["train"][classe]["X"], datasets["train"][classe]["Y"] = create_binary_classification_dataset(datas_train, classe) datasets["val"][classe]["X"], datasets["val"][classe]["Y"] = create_binary_classification_dataset(datas_val, classe) + + datasets["feux_train"]["feux"]["X"], datasets["feux_train"]["feux"]["Y"] = create_binary_classification_dataset_feux(datas_train) + datasets["feux_val"]["feux"]["X"], datasets["feux_val"]["feux"]["Y"] = create_binary_classification_dataset_feux(datas_val) # Dict format to store all classifiers classifiers = { @@ -101,7 +117,8 @@ classifiers = { "ceder": None, "frouge": None, "forange": None, - "fvert": None + "fvert": None, + "feux" : None, } # ------------- CREATE CLASSIFIERS ----------------- @@ -109,18 +126,24 @@ print("Creating classifiers...") for classe in CLASSES: if classe not in ['ff', 'empty']: classifiers[classe] = svm.SVC(kernel='poly', probability=True) - +classifiers['feux'] = svm.SVC(kernel='poly', probability=True) # ------------- TRAIN & TEST CLASSIFIERS ----------------- print("Train and testing all classifiers...") for classe in CLASSES: - if classe not in ['ff', 'empty']: + if classe not in ['ff', 'empty','feux']: X_train, y_train = datasets['train'][classe]["X"], datasets['train'][classe]["Y"] X_val, y_val = datasets['val'][classe]["X"], datasets['val'][classe]["Y"] classifiers[classe].fit(X_train, y_train) y_pred = classifiers[classe].predict(X_val) print(f"Précision pour panneaux {classe}: {np.mean(y_pred == y_val)}") +X_train, y_train = datasets["feux_train"]["feux"]["X"], datasets["feux_train"]["feux"]["Y"] +X_val, y_val = datasets["feux_val"]["feux"]["X"], datasets["feux_val"]["feux"]["Y"] +classifiers['feux'].fit(X_train, y_train) +y_feu = classifiers['feux'].predict(X_val) +print(f"Précision pour panneaux feux: {np.mean(y_feu == y_val)}") + # ------------- SAVE CLASSIFIERS ----------------- print("Saving classifiers") diff --git a/supervised_learning/detection.py b/supervised_learning/detection.py index 91e0a45eb1f8b9bf349ddca9324d934d961ef82b..443451260d7acb37380fff96d23a5d7fd4c64bd0 100644 --- a/supervised_learning/detection.py +++ b/supervised_learning/detection.py @@ -13,6 +13,7 @@ parser.add_argument('output_folder', metavar='DIR', help='Folder of output label # Analyser les arguments de la ligne de commande args = parser.parse_args() + # Load input folder input_folder = args.input_folder # Check if input folder exists @@ -39,7 +40,8 @@ classifiers = { "ceder": None, "frouge": None, "forange": None, - "fvert": None + "fvert": None, + "feux":None } # Parse dict and load all classifiers @@ -77,7 +79,7 @@ for filepath, image in X.items(): # Filter rois with Non Maximum Suppression process rois = non_max_suppression(rois, iou_threshold=0.1) - #display_rois(image, rois) + #display_rois(image, rois) -- UNCOMMENT TO DISPLAY # Write preticted labels into prediction files prediction_file_path = os.path.join(output_folder, f"{name}.csv")