From 9d96b4c7de4e58e1c6f1cc5fba490b7b52f808fb Mon Sep 17 00:00:00 2001 From: MathieuKoz <127348750+MathieuKoz@users.noreply.github.com> Date: Thu, 20 Jun 2024 21:41:13 +0200 Subject: [PATCH] correction vue --- supervised_learning/vue.py | 31 ++++++++++++++++++++++++++----- 1 file changed, 26 insertions(+), 5 deletions(-) diff --git a/supervised_learning/vue.py b/supervised_learning/vue.py index a02e4dd..083c03c 100644 --- a/supervised_learning/vue.py +++ b/supervised_learning/vue.py @@ -1,4 +1,3 @@ -from supervised_learning.detection import * from supervised_learning.config import * from supervised_learning.utils import * from PIL import Image, ImageDraw, ImageFont, ImageColor @@ -6,8 +5,30 @@ import os import csv import random import matplotlib.pyplot as plt +import argparse + +# ------------- IMPORT PARSER & ARGS --------------- + +parser = argparse.ArgumentParser() +parser.add_argument('img_folder', metavar='DIR', help='Folder of input images to analyse') +parser.add_argument('pred_folder', metavar='DIR', help='Folder of predicted labels from the analysis') + +# Analyser les arguments de la ligne de commande +args = parser.parse_args() + + +# Load input folder +img_folder = args.img_folder +# Check if input folder exists +if not os.path.exists(img_folder): + raise FileNotFoundError(f"[Error] Folder '{img_folder}' does not exist.") + +# Load input folder +pred_folder = args.pred_folder +# Check if input folder exists +if not os.path.exists(pred_folder): + raise FileNotFoundError(f"[Error] Folder '{pred_folder}' does not exist.") -#detecteur(VAL_IMAGE_FOLDER_PATH, PREDICTION_LABEL_FOLDER_PATH) def calculate_text_size(text, font): # calculate text size based on font properties @@ -80,9 +101,9 @@ fig, axs = plt.subplots(2, 5, figsize=(12, 6)) for ax in axs.ravel(): #images_dir = os.path.join("train", "images") #labels_dir = os.path.join("train", "labels") - image_name = random.choice(os.listdir(VAL_IMAGE_FOLDER_PATH)) - image_path = os.path.join(VAL_IMAGE_FOLDER_PATH, image_name) - csv_path = os.path.join(PREDICTION_LABEL_FOLDER_PATH, image_name[:-4] + ".csv") + image_name = random.choice(os.listdir(img_folder)) + image_path = os.path.join(img_folder, image_name) + csv_path = os.path.join(pred_folder, image_name[:-4] + ".csv") # Call visualize_image function to modify the image image_to_display = visualize_image(image_path, csv_path) -- GitLab