database_pre1.py 4.79 KB
Newer Older
Tianyang's avatar
Tianyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import cassandra.cluster
import csv
import re


def connection():
    import cassandra.cluster
    cluster = cassandra.cluster.Cluster(['localhost'])
    session = cluster.connect('caitiany')
    return session

def databaseCreate_Q1(session):
    query = """ 
	CREATE TABLE database_espace (
        station varchar,
        year int,
        season varchar,
        month int,
        day int,
        hour int,
        minute int,
        lon float,
        lat float,
		tmpf float,
		dwpf float,
		relh float,
		drct float,
		sknt float,
		p01i float,
		alti float,
		mslp float,
		vsby float,
		gust float,
		skyc1 varchar,
		skyc2 varchar,
		skyc3 varchar,
		skyc4 varchar,
		skyl1 float,
		skyl2 float,
		skyl3 float,
		skyl4 float,
		wxcodes varchar,
		ice_accretion_1hr float,
		ice_accretion_3hr float,
		ice_accretion_6hr float,
		peak_wind_gust float,
		peak_wind_drct float,
		peak_wind_time varchar,
		feel float,
		metar varchar,
		PRIMARY KEY ((station),year, season, month,day,hour,minute)
	)"""
    session.execute(query)
    print("DATA BASE database_espace created!")


def load_data(filename):
    dateparser = re.compile("(?P<year>\d+)-(?P<month>\d+)-(?P<day>\d+) (?P<hour>\d+):(?P<minute>\d+)")
    with open(filename) as f:
        for r in csv.DictReader(f):
            match_time = dateparser.match(r["valid"])
            if not match_time:
                continue
            time = match_time.groupdict()
            #add season
            if 3<=int(time["month"])<=5:
                r["season"]="Spring"
            elif 6<=int(time["month"])<=8:
                r["season"]="Summer"
            elif 9<=int(time["month"])<=11:
                r["season"]="Autumn"
            elif int(time["month"]) in (12,1,2):
                r["season"]="Winter"
            else:
                continue

            for collonne in r:
                if r[collonne] == "M":
                    r[collonne]= "nan"
            
            data = {}
            data["station"] = r["station"]
            data["year"] = int(time["year"])
            data["season"] = r["season"]
            data["month"] = int(time["month"])
            data["day"] = int(time["day"])
            data["hour"] = int(time["hour"])
            data["minute"] = int(time["minute"])
            data["lon"] = float(r["lon"])
            data["lat"] = float(r["lat"])
            data["tmpf"] = float(r["tmpf"])
            data["dwpf"] = float(r["dwpf"])
            data["relh"] = float(r["relh"])
            data["drct"] = float(r["drct"])
            data["sknt"] = float(r["sknt"])
            data["p01i"] = float(r["p01i"])
            data["alti"] = float(r["alti"])
            data["mslp"] = float(r["mslp"])
            data["vsby"] = float(r["vsby"])
            data["gust"] = float(r["gust"])

            data["skyc1"] = r["skyc1"]
            data["skyc2"] = r["skyc2"]
            data["skyc3"] = r["skyc3"]
            data["skyc4"] = r["skyc4"]

            data["skyl1"] = float(r["skyl1"])
            data["skyl2"] = float(r["skyl2"])
            data["skyl3"] = float(r["skyl3"])
            data["skyl4"] = float(r["skyl4"])
            data["wxcodes"] = r["wxcodes"]

            data["ice_accretion_1hr"] = float(r["ice_accretion_1hr"])
            data["ice_accretion_3hr"] = float(r["ice_accretion_3hr"])
            data["ice_accretion_6hr"] = float(r["ice_accretion_6hr"])
            data["peak_wind_gust"] = float(r["peak_wind_gust"])
            data["peak_wind_drct"] = float(r["peak_wind_drct"])
            data["peak_wind_time"] = r["peak_wind_time"]

            data["feel"] = float(r["feel"])
            data["metar"] = r["metar"]

            yield data



Tianyang's avatar
Tianyang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

#Create the query according to if each collonne's value is null or not
def createQuery(data):
    result = dict()
    for each in data:
        if data[each] != "nan" and  str(data[each]) != 'nan':
            result[each] = data[each]

    ligne_value = []
    for each in result:
        ligne_value.append(result[each])
    ligne_value = tuple(ligne_value)

    ligne = []
    for each in result:
        ligne.append(each)
    ligne = tuple(ligne)

    #connect the query together
    query = "INSERT INTO database_espace("
    for eachc in ligne:
        query += str(eachc)+","
    query = "".join(list(query)[:-1]) + ") VALUES("
    longth = len(ligne)
    for _ in range(longth):
        query += "%s,"
    query = "".join(list(query)[:-1]) + ");"

    return query, ligne_value



Tianyang's avatar
Tianyang committed
159
160
161
162
163
164
165
def insection_sql_Q1(filename,session):
    target = load_data(filename)
    i = 1
    for data in target:
        i += 1
        if (i % 500 == 0):
            print("500 finished.....")
Tianyang's avatar
Tianyang committed
166
167
        
        query, ligne = createQuery(data)
Tianyang's avatar
Tianyang committed
168
169
170
171
172
173
174
175

        session.execute(query, ligne)


if __name__ == "__main__":
    session = connection()
    databaseCreate_Q1(session)
    insection_sql_Q1("Projet-NF26/data.csv",session)