question3.py 7.3 KB
Newer Older
Tianyang's avatar
Tianyang committed
1
2
3
4
5
6
7
import numpy as np
import matplotlib.pyplot as plt
from functools import reduce
from database_pre3 import connection
import matplotlib.pyplot as plt
import re
import folium
Tianyang's avatar
Tianyang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import random


table_variable = [
    'date',
    'lon',
    'lat',
    'station',
    'alti',
    'drct',
    'dwpf', 
    'feel',
    'gust',
    'ice_accretion_1hr',
    'ice_accretion_3hr',
    'ice_accretion_6hr',
    'metar',
    'mslp',
    'p01i',
    'peak_wind_drct',
    'peak_wind_gust',
    'peak_wind_time',
    'relh',
    'sknt',
    'skyc1',
    'skyc2',
    'skyc3',
    'skyc4',
    'skyl1',
    'skyl2',
    'skyl3',
    'skyl4',
    'tmpf',
    'vsby',
    'wxcodes']



Tianyang's avatar
Tianyang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

def add (x,y):
    return x+y


def abs_diff(x,y):
    return abs(x-y)

def diff(x,y):
    return x-y



#caculate mean reduce
#input [count,mean]
def reduceFonction (x,y):
    result = []
    for i in range(2):
        result.append(reduce(add,[x[i],y[i]]))
    return result

#input [valeur] -> [count,mean]
def mapFonction1 (x):
    return [1,x]

#input [count,mean] -> [mean]
def mapFonction2 (x):
    return x[1]/x[0]

Tianyang's avatar
Tianyang committed
75
#Test if it is a type mean
Tianyang's avatar
Tianyang committed
76
77
78
79
def testNan (x):
    test = x != x
    return test

Tianyang's avatar
Tianyang committed
80
#Map reduce to caculate the means of each station
Tianyang's avatar
Tianyang committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def mapReduce_kmeans(data,targetNB):
    results = dict()
    for row in data.result():
        data_target = row[targetNB]
        if testNan(data_target):
            continue
        data_espace = (row[1],row[2],row[3])
        if results.get(data_espace) is None:
            results[data_espace] = mapFonction1(data_target)
        else:
            mapresult = mapFonction1(data_target)
            results[data_espace] = reduceFonction(mapresult,results[data_espace])
    for eachEspace in results:
        results[eachEspace] = mapFonction2(results[eachEspace])
    return results

Tianyang's avatar
Tianyang committed
97
#Caculate the difference of the number of the clusters 
Tianyang's avatar
Tianyang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def cluster_nb_diff(centre_new,centre):
    sum = 0
    for i in range(3):
        sum += abs(centre_new[i][0]-centre[i][0])
    return sum/3



#input [tmpt] -> [tmpt,tmpt,tmpt,tmpt]
def map1_kmeans(x):
    return [x,x,x,x]

def mapCentre(x):
    return [x[0],x[1],x[2],0]


Tianyang's avatar
Tianyang committed
114
#input [tmpt,tmpt,tmpt,tmpt] and [c1,c2,c3,0] -> [|tmpt - c1|,|tmpt - c2|,|tmpt - c3|,tmpt]
Tianyang's avatar
Tianyang committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def reduceKmeans (x,y):
    result = []
    for i in range(4):
        result.append(reduce(abs_diff,[x[i],y[i]]))
    return result


#input [|tmpt - c1|,|tmpt - c2|,|tmpt - c3|,tmpt] -> [cluster number, min(|tmpt - c|), tmpt]
def map2_kmeans(x):
    min_value = 10000000000000
    index = 0
    for each in range(3):
        if min_value > x[each]:
            min_value = x[each]
            index = each
    return [index,min_value,x[3]]



Tianyang's avatar
Tianyang committed
134
#Update the new center by means
Tianyang's avatar
Tianyang committed
135
def MapnewCentre(x):
Tianyang's avatar
Tianyang committed
136
137
138
139
    if x[0] != 0:
        return x[1]/x[0]
    else:
        return 0
Tianyang's avatar
Tianyang committed
140
141


Tianyang's avatar
Tianyang committed
142
#The main algorithm of Kmeans
Tianyang's avatar
Tianyang committed
143
def kmeans (data,targetNB,target):
Tianyang's avatar
Tianyang committed
144
145
146
147
148
    #cluster est pour stocler lat, lon de chaque point de chaque cluster
    cluster = [[],[],[]]

    result = mapReduce_kmeans(data,targetNB)

Tianyang's avatar
Tianyang committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    if len(result) < 3:
        raise Exception ("We\'ve just searched less than 3 station!!")

    #mettre ramdom 3 point comme le centres init
    center1 = random.choice(list(result))
    center2 = random.choice(list(result))
    center3 = random.choice(list(result))
    init_point_values = [result[center1],result[center2],result[center3]]
    #init_point_values = [result[i] for i in result.keys()][:3]
    init_point_keys = [center1,center2,center3]

    #3centre with [point count, temprature centre]
    centre = {0:[0,0],1:[0,0],2:[0,0]}
    centre_new = {0:[0,0],1:[0,0],2:[0,0]}
Tianyang's avatar
Tianyang committed
163
164
165

    for key in centre.keys():
        centre[key] = [1,init_point_values[key]]
Tianyang's avatar
Tianyang committed
166
        centre_new[key] = [1,init_point_values[key]]
Tianyang's avatar
Tianyang committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        cluster[key].append(init_point_keys[key])
    

    #init the centre new and result new for mapreduce
    result_new = dict()
    #When the number of point of cluster don't change,stop
    while True:
        for eachkey in result:
            if eachkey in cluster[0] or eachkey in cluster[1] or eachkey in cluster[2]:
                continue
            
            #caculate the distance between the data of this lingne and the centre

            #Map1_kemeans
            result_new[eachkey] = map1_kmeans(result[eachkey])
            centre_values = []
            for each in centre:
                centre_values.append(centre[each][1])
            centre_values = mapCentre(centre_values)

            #Reduce
            result_new[eachkey] = reduceKmeans(result_new[eachkey],centre_values)

            #Map2_kmeans
            result_new[eachkey] = map2_kmeans(result_new[eachkey])
        
        #Put all the distance and points into the clusters
        #Result format [cluster number, min(|tmpt - c|),tmpt - c]
        for eachpoint in result_new:
            clusterNB = result_new[eachpoint][0]
            centre_new[clusterNB][0] += 1
            centre_new[clusterNB][1] += result_new[eachpoint][2]
            cluster[clusterNB].append(eachpoint)
        
        #compare centre_new and centre, if
        if not cluster_nb_diff(centre_new,centre) > 1:
            break
        else:
            #caculate the new centre
Tianyang's avatar
Tianyang committed
206
            print ("Cluster number differ:  ",cluster_nb_diff(centre_new,centre))
Tianyang's avatar
Tianyang committed
207
208
            for eachculster in centre_new:
                centre_new[eachculster][1] = MapnewCentre(centre_new[eachculster])
Tianyang's avatar
Tianyang committed
209
210
            print("center new: ",centre_new)
            print("center old: ",centre)
Tianyang's avatar
Tianyang committed
211
212
213
214
            centre = centre_new
            centre_new = {0:[0,0],1:[0,0],2:[0,0]}
            result_new = dict()
            cluster = [[],[],[]]
Tianyang's avatar
Tianyang committed
215
    createMap(cluster,result)
Tianyang's avatar
Tianyang committed
216

Tianyang's avatar
Tianyang committed
217
#Create the map of the cluster
Tianyang's avatar
Tianyang committed
218
def createMap (cluster,result):
Tianyang's avatar
Tianyang committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    mean_lat = 0
    count = 0
    for each in [cluster[0],cluster[1],cluster[2]]:
        for each_pos in each:
            mean_lat += each_pos[0]
            count += 1
    mean_lat = mean_lat/count

    mean_lon = 0
    count = 0
    for each in [cluster[0],cluster[1],cluster[2]]:
        for each_pos in each:
            mean_lon += each_pos[1]
            count += 1
    mean_lon = mean_lon/count

    m = folium.Map(location=[mean_lon,mean_lat],zoom_start=6)

    color = {0:'blue',1:'red',2:'green'}
    i = 0
    for each in [cluster[0],cluster[1],cluster[2]]:
        for each_pos in each:
Tianyang's avatar
Tianyang committed
241
            label = str(each_pos[2])+"\n"+""+target+":"+str(round(result[(each_pos[0],each_pos[1],each_pos[2])],2))
Tianyang's avatar
Tianyang committed
242
            folium.Marker([each_pos[1],each_pos[0]],
Tianyang's avatar
Tianyang committed
243
                        popup=label,
Tianyang's avatar
Tianyang committed
244
245
246
                        icon=folium.Icon(color=color[i])).add_to(m)
        i +=1
    m.save("Projet-NF26/map.html")
Tianyang's avatar
Tianyang committed
247
248
249
    print("Generate successfully")


Tianyang's avatar
Tianyang committed
250
#Check which number of the indicateur
Tianyang's avatar
Tianyang committed
251
252
253
254
255
256
257
def checkNBvariable (x):
    i=0
    for each in table_variable:
        if x == each:
            return i
        i += 1
    print ('Doesn\'t exist!!')
Tianyang's avatar
Tianyang committed
258
259
260
261


if __name__ == "__main__":
    session = connection()
Tianyang's avatar
Tianyang committed
262
263
264
265
266
267
    start = input("Please enter the start time [form: AAAA-MM-DD (From 2008-1-1 to 2017-12-30)]:  ")
    end = input("Please enter the end time [form: AAAA-MM-DD (From 2008-1-1 to 2017-12-30)]:  ")
    target = input("Which indicator do you want to check [tmpf,dwpf,etc]:  ")
    targetNB = checkNBvariable(target)
    #start = '2008-12-19'
    #end = '2012-12-14'
Tianyang's avatar
Tianyang committed
268
    data = session.execute_async("select * from caitiany.database_kmeans where date >= '%s' and date <= '%s' ALLOW FILTERING"%(start,end))
Tianyang's avatar
Tianyang committed
269
    kmeans(data,targetNB,target)