regresseur <- function(dataset) { # Chargement de l'environnement load("env.Rdata") cv.out <- cv.glmnet(as.matrix(reg.train.X),reg.train.y,alpha=1) #model.reg <- glmnet(as.matrix(reg.train.X),reg.train.y,lambda=cv.out$lambda.min,alpha=1) model.reg <- lm(reg.train.y ~ ., data = reg.train.X) data.test <- dataset[,reg.mask] predictions <- predict(model.reg, newdata = data.test) return(predictions) }