Commit 36bbb85b authored by Long Le's avatar Long Le

TP régression (pas fini)

parent 499801d2
...@@ -4,8 +4,8 @@ ...@@ -4,8 +4,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Regression\n", "# TP Apprentissage supervisé: Régression\n",
"Rappel problème de régression" "Dans ce TP, on va faire la regression. C'est pour analyser la relation d'une variable par rapport à une ou plusieurs autres."
] ]
}, },
{ {
...@@ -19,32 +19,56 @@ ...@@ -19,32 +19,56 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"On va utiliser les données Boston.\n",
"https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html\n",
"\n",
"Prix des maisons à Boston (cf le site pour les variables)\n",
"https://scikit-learn.org/stable/datasets/index.html#boston-dataset\n",
"\n",
"Importez les libraries de ce matin: `numpy` et `scikit datasets`.\n",
"Consultation de la doc du dataset\n", "Consultation de la doc du dataset\n",
"\n",
"Chargement du dataset boston" "Chargement du dataset boston"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Analyse exploratoire et préparation du dataset\n", "## Analyse exploratoire et préparation du dataset\n",
"Étudier les corrélations" "Étudier les corrélations en utilisant `np.corrcoef`"
] ]
}, },
{ {
"cell_type": "markdown", "cell_type": "code",
"execution_count": null,
"metadata": {}, "metadata": {},
"source": [ "outputs": [],
"Split du dataset boston" "source": []
]
}, },
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"##" "Split du dataset boston\n",
"\n",
"Pour cela, utilisez la fonction scikit-learn `sklearn.model_selection.train_test_split`. Importez cette méthode, "
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -54,6 +78,13 @@ ...@@ -54,6 +78,13 @@
"Trouver le modèle sur scikit learn." "Trouver le modèle sur scikit learn."
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -61,15 +92,28 @@ ...@@ -61,15 +92,28 @@
"Run sur boston. afficher les coef de chaque features. Quelles features sont significative?" "Run sur boston. afficher les coef de chaque features. Quelles features sont significative?"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Arbre de régression\n", "## Arbre de régression\n",
"Rappel modèle\n", "![](https://fr.wikipedia.org/wiki/Arbre_de_d%C3%A9cision#/media/File:Arbre_de_decision.jpg)"
"image"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -77,6 +121,13 @@ ...@@ -77,6 +121,13 @@
"Essayer avec une profondeur max de 3" "Essayer avec une profondeur max de 3"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -84,6 +135,13 @@ ...@@ -84,6 +135,13 @@
"Essayer avec une profondeur max de 5" "Essayer avec une profondeur max de 5"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -91,6 +149,13 @@ ...@@ -91,6 +149,13 @@
"Essayer avec une profondeur max de 10" "Essayer avec une profondeur max de 10"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -98,6 +163,13 @@ ...@@ -98,6 +163,13 @@
"Comparer les résultats" "Comparer les résultats"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -108,6 +180,13 @@ ...@@ -108,6 +180,13 @@
"modèle" "modèle"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -115,6 +194,13 @@ ...@@ -115,6 +194,13 @@
"Essayer avec 3 arbres" "Essayer avec 3 arbres"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -122,6 +208,13 @@ ...@@ -122,6 +208,13 @@
"Essayer avec 10 arbres" "Essayer avec 10 arbres"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -129,6 +222,13 @@ ...@@ -129,6 +222,13 @@
"100 arbres" "100 arbres"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -136,6 +236,13 @@ ...@@ -136,6 +236,13 @@
"Comparer avec les arbres de régression. Quels sont les avantages?" "Comparer avec les arbres de régression. Quels sont les avantages?"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -143,6 +250,13 @@ ...@@ -143,6 +250,13 @@
"_optionel_ Tracer le résultat avec 1 arbre, 3 arbres et 100 arbres " "_optionel_ Tracer le résultat avec 1 arbre, 3 arbres et 100 arbres "
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
...@@ -152,6 +266,13 @@ ...@@ -152,6 +266,13 @@
"\n", "\n",
"Faire une régression sur le résultat d'une PCA (touchy)\n" "Faire une régression sur le résultat d'une PCA (touchy)\n"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
...@@ -170,7 +291,7 @@ ...@@ -170,7 +291,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.6" "version": "3.7.2"
} }
}, },
"nbformat": 4, "nbformat": 4,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment